化学类型铅酸蓄电池
产品认证CCC
电压12
类型储能用蓄电池
额定容量100AH
是否进口否
适用范围ups蓄电池
内阻5
容量100AH
用途机房,UPS电源,EPS电源,直流屏电源,基站
运输陆运
使用范围通讯
包装纸箱包装
端子类型铅
端子铅
储存期限3年
使用寿命8年
A412/180 F10A412/180 A
A412/90 F10A412/90 A
A412/120 F10A412/120 A
A412/65 G6A412/65 F10
A412/100 F10A412/100 A
A412/50 G6A412/50 F10
A412/50 AA412/32 G6
A412/20 G5A412/12 SR
A412/8.5 SRA412/5.5 SR
公司成立以来,一直秉持想客户所想、忧客户所忧、充分维护客户权益,以客户为中心,拥有一套科学合理的作业流程以及客户维护体系,为客户创造是公司生存之根本,通过点滴积累和持续努力,成为者。
简介
蓄电池(Storage Battery)是将化学能直接转化成电能的一种装置,是按可再充电设计的电池,通过可逆的化学反应实现再充电,通常是指铅酸蓄电池,它是电池中的一种,属于二次电池。它的工作原理:充电时利用外部的电能使内部活性物质再生,把电能储存为化学能,需要放电时再次把化学能转换为电能输出,比如生活中常用的手机电池等。
它用填满海绵状铅的铅基板栅(又称格子体)作负极,填满二氧化铅的铅基板栅作正极,并用密度1.26--1.33g/mlg/ml的稀硫酸作电解质。电池在放电时,金属铅是负极,发生氧化反应,生成硫酸铅;二氧化铅是正极,发生还原反应,生成硫酸铅。电池在用直流电充电时,两较分别生成单质铅和二氧化铅。移去电源后,它又恢复到放电前的状态,组成化学电池。铅蓄电池能反复充电、放电,它的单体电压是2V,电池是由一个或多个单体构成的电池组,简称蓄电池,常见的是6V,其它还有2V、4V、8V、24V蓄电池。如汽车上用的蓄电池(俗称电瓶)是6个铅蓄电池串联成12V的电池组。
![威海蓄电池生产商](//l.b2b168.com/2018/06/26/09/201806260943562716874.jpg)
UPS蓄电池
UPS 称为不间断电源,是因为停电的时候,它能快速转换到"逆变"状态,从而不会让在使用中的电脑因为突然停电未来得及存储而失去重要文件。 不是用来当备用电源用的,如果你只是想在停电的时候可以用电,光买逆变器就够了。 一般家用UPS里用的大多是,免维护型铅酸蓄电池。
UPS蓄电池好坏判别方法
蓄电池的好坏判断有的蓄电池测量仪,但是一般的用户很少有这种仪器,都只有一只万用表。下面几点维修中判断蓄电池好坏的几点总结,以供参考. 1、从外观判断:观察外观有无变形、凸出、漏液、破裂炸开、烧焦、螺丝连接处有无氧化物渗出等。 2、 带载测量:若外观无异常,UPS工作于电池模式下,带一定量的负载,若放电时间明显短于正常放电时间,充电8小时以后,乃不能恢复正常的备用时间,判定电池老化。 3、 用万用表测量: A 、电池放电模式下测量:测量电池组中各个电池端电压,若其中一个或多个电池端电压显明**或低于标称电压(标称电压12V/节),判断电池老化。 B 、 市电模式下测量:电池组中各个电池端的充电电压,若其中一个或多个电池的充电电压显明**或低于其他电压,判定电池老化。 C、 测电池组的总电压:电池组总电压明显低于标称值(以C1K电池组标称值是36V为例),充电8小时后乃不能恢复到正常值,即使恢复到正常值,放电时间达不到正常放电时间,判定电池老化。 D、电池开机测量:UPS不开机,也不要接市电,先用万用表测量电池组总电压,以C1K为例,此时电压可能在36V-40V之间,属于正常值,表笔不要离开,一直盯住万用表的指示,然后接开机键,若此时电池总电压马上降至30V以下乃至十几伏,UPS马上自动关机,关机后电压立即恢复到原有值。判定电池老化。
![威海蓄电池生产商](//l.b2b168.com/2018/06/26/09/201806260943558552104.jpg)
基站蓄电池从目前使用情况来看,普遍存在蓄电池容量下降过快,使用寿命短的问题,短短1~2年时间蓄电池的容量只有标称容量的30%~40%,有的只有10%~20%,而大部分基站蓄电池经过1~4年运行,其容量只有其标称容量的50%左右,远远达不到其设计使用寿命,与交换局站同类蓄电池相比,其使用寿命也大大降低。本文对基站电源运行过程中蓄电池的损坏原因进行了分析,提出延长基站蓄电池使用寿命的方法。
蓄电池寿命的定义
蓄电池的寿命一般是指浮充状态下的使用年限。对于在非浮充状态下工作的蓄电池,其寿命是从循环放电次数和放电深度两个维度来衡量的,如表1所示。所以不能简单地以能使用多少年来衡量蓄电池的寿命。
对于蓄电池的循环放电次数来说,必须是在蓄电池放电后充足电能,要充足电能充电时间至少需要(依据YD/T799-2002的规定)。对于充电不足的情况,其循环放电次数很难确定,肯定要低于表1中描述的数据。
放电深度对电池使用寿命的影响也非常大,电池放电深度越深,其循环使用次数就越少,如表1所示,因此在使用时应避免深度放电。
蓄电池寿命终止的因素
对于阀控密封铅酸蓄电池来说,有四种失效模式:正极板腐蚀、失水、热失控、硫酸盐化。其中正极板栅腐蚀由于合金工艺技术的提高,腐蚀速度非常慢,一般是10~15年。
失水的途径比较多:节流阀设计不合理,频繁开启;电源对蓄电池频繁均充;环境温度过高。其中高温是主要的因素,高温会加速蓄电池失水速度,导致蓄电池容量下降。以25℃为基准,当蓄电池运行环境上升10℃,寿命减少50%,如图1所示。
热失控是指蓄电池在充电过程中产生的热量未及时释放出,温度和化学反应之间形成一个正回馈,出现失控。热失控对蓄电池是毁灭性的,造成蓄电池外壳变形,严重者造成蓄电池爆炸。热失控的原因是机房环境温度**过45℃、高温下浮充电压过高(没有温度补偿功能)、充电电流**过设计值(**过2.5C10)。
硫酸盐化是指在较板上生成白色坚硬的硫酸铅结晶,颗粒比较大,活性低,充电时难以转化为活性物质的硫酸铅,导致电池容量下降或功能衰退。盐酸化的原因是电池在安装使用前曾长时间搁置储存(**过3个月)、持续过放电或经常过量放电或小电流深放电、环境温度过高或过低、经常充电不足和没有定期执行均充。
影响基站电池运行寿命的因素
很多基站的位置偏远,交流电供电不稳定或频繁停电,甚至根本就没有交流电;基站没有空调或户外站点,环境温度高;站点偏远且数量多,无法做到精细化维护。以上是基站蓄电池工作环境的基本状况。
通过对中国基站蓄电池损坏情况的分析,采集新疆、浙江、陕西、云南几个省蓄电池损坏的标本分析,并结合海外越南、埃及、巴基斯坦、埃塞俄比亚基站电源的损坏数据,我们得出影响蓄电池运行寿命的有以下几个因素:
1、交流频繁停电
频繁停电、停电时间长、停电时间无规律,使蓄电池频繁充放电,或者基站根本就没有交流电,通过柴油发电机和蓄电池交替供电,是造成蓄电池容量下降过快和使用寿命缩短的一个主要原因。
基站停电频次过高,内停电数次,甚至连续停电数天,使基站蓄电池在放电后尚未充足电的情况下又放电,蓄电池长时间处于欠充状态。如连续多次发生欠充,将造成蓄电池容量累积性亏损,硫酸盐化加剧,蓄电池容量将在较短时间内下降,其使用寿命将较快终止。
2、蓄电池存储时间太长
蓄电池在存放过程中存在自放电,如果长时间得不到补充,就会出现硫酸盐化现象。这种现象如果没有得到及时改善,蓄电池容量会降低甚至损坏不能使用。蓄电池在存储过程中,环境温度对容量影响也非常大,如表2所示。
3、基站的环境温度过高
基站停电后,空调停机。由于基站为封闭机房,基站室内温度将大幅上升。温度过高使阀控式密封电池内部失水量加剧,电解液饱和度下降(玻璃纤维棉隔膜内电解液减少)使电池容量降低,缩短使用寿命。
4、电池安装开通质量
蓄电池的安装是否符合规范,对蓄电池的使用使命影响非常大。安装时没有将蓄电池之间的连接器固定螺钉拧紧,接线柱与连接器之间接触电阻,在充放电时将产生大量热量而烧坏,造成整组蓄电池损坏;蓄电池温度传感器没有安装或安装错误,在温度高时会因为无法调整充电电压到合适值,蓄电池出现热失控现象,造成蓄电池损坏;开通时没有在单元中调整蓄电池管理参数至合理值,造成蓄电池损坏。
5、没有正确地设置蓄电池管理参数
开关电源涉及到蓄电池管理的参数有蓄电池容量、充电电流系数、均浮充电压、一二次下电电压、自动均充的条件、温度补偿电压,如果这些参数设置不合理,会对蓄电池的寿命造成影响。例如一二次下电电压设置电压过低,使蓄电池出现过放电甚至深度过放电现象,加剧蓄电池负极板硫酸化,将使蓄电池容量下降,使用寿命缩短。蓄电池容量设置不正确,影响蓄电池充电电流,造成蓄电池充电电流过大而损坏。
延长基站供电蓄电池寿命的方法
根据造成基站蓄电池运行寿命减少的因素,结合实际情况我们提供如下几个延长蓄电池寿命的方法。
1、增加油机供电
对于频繁停电的站点,通过增加固定油机或移动油机来**蓄电池在停电后能得到及时补充充电,或者避免蓄电池深度放电。对过于频繁停电的站点,除了采用上面的方法之外,还需要采取的蓄电池来解决问题,例如用GEL电池。GEL在循环使用寿命上比AGM次数多1.5~2倍。建议在这种站点使用2V电池,避免使用12V电池。
对于没有交流电的站点,柴油发电机很难保证(油价上涨和不能及时加油)供电,需要采取新的供电方案,可考虑采用太阳能供电系统。
2、减少蓄电池过放并及时补充
在电源供电方案规划期,需要根据负载电流,结合蓄电池的放电曲线配置比较合适的蓄电池容量,在要求的放电时间内避免蓄电池过放。一般原则是在蓄电池放电达到规划要求的时间时,蓄电池放出的容量≤80%。
电源开通后,如果暂时没有市电接入或暂时不使用电池,必须断开蓄电池的所有负载,使蓄电池处于开路状态。避免蓄电池小电流放电,造成蓄电池容量下降或者失效。
在电源蓄电池管理方面,尽量避免蓄电池在仓库放置时间**过3个月,如果**过3个月不能安装,那么就要考虑对蓄电池进行充电。
根据实际使用情况调整蓄电池欠压保护的电压,尽量避免蓄电池出现过放电和深度过放电(小电流过放电)。对于频繁停电的站点,为了延长蓄电池运行寿命,要求一次负载下电电压≥47V,二次下电电压≥46V。
在电源开通后,人工控制执行对蓄电池均衡充电,均衡充电时间≥10小时。对于频繁停电的站点,可以增加蓄电池充电电流,以缩短蓄电池充电时间,增加充电前期充入的电量。通过单元,将充电电流系数调高为0.18~0.22C,大充电电流系数不能**过0.25C。
根据基站停电次数及时间,对于停电次数多且停电时间长的站点,延长均衡充电时间,改变均衡充电时间周期设置,把原设置一般180天周期调整为30天或15天,以减少盐酸化现象的发生。
3、减少高温影响
如果蓄电池安装在机房或者方舱内,需要安装空调,确保机房环境在合适的温度。对于户外电源,需要在电池柜上搭建凉棚避免阳光直射。可以通过地埋的方式,把蓄电池放在的地窖内,确保蓄电池的工作环境温度不会太高。户外电源好使用温度范围比较宽的GEL电池,以减少高温或低温对电池造成的影响,以延长使用寿命。
4、定期维护
蓄电池在运行一段时间后,会出现个别电池落后(一般情况下落后电池端电压不得小于正常的20mV)或失效的现象。如果不及时发现,那么落后的电池会越来越落后,直至失效。失效的电池会导致其他好的电池随时间推移慢慢失效,进而使整个电池组报废。一般要对蓄电池每隔3个月进行一次维护,主要检查蓄电池组中有无漏液、有无外壳变形、有无落后电池存在、蓄电池连接处有无锈蚀和固定螺钉松动、环境温度是否正常等。只有做到及时发现及时处理,才能确保蓄电池的正常使用寿命。
![威海蓄电池生产商](//l.b2b168.com/2020/08/18/11/202008181115407035694.jpg)
时高蓄电池,理士蓄电池,松下蓄电池,汤浅蓄电池,大力神蓄电池
UPS电源铅酸电池损坏的四个原因:
①失水②硫化物③不平衡④热失控(滚筒充电),前两者①占市场上电池损坏的97%。
1)分析:铅酸蓄电池失水的主要原因
铅酸电池中的电解质与人体内的血液一样有价值。一旦电解液消失,就意味着电池报废。电解液由稀硫酸和水组成。充电过程中,很难避免失水,充电方式不一样,失水量也不一样。普通的三段式充电模式,充电过程中的水损失是智能脉冲模式的两倍以上!除了电池的自然寿命还有一个损失的生命:单个电池**过90克的水分损失,电池报废。在室温(25℃)下,普通充电器失水量约为0.25克,智能充电脉冲为0.12克。在高温(35℃)下,通用充电器损失0.5克水,智能充电脉冲为0.23克。点击这里计算,普通充电器经过250次水充电干燥循环后,600次循环后水循环中新的三相脉冲将充电干燥。因此,智能脉冲可以延长电池寿命一倍以上。
铅酸电池在充电过程中是大的问题。
根据美国科学家(J.A.Mas)对铅酸蓄电池充电过程中气体释放的原因和规律的研究,铅酸蓄电池可接受的充电电流如下,以达到低的气体释放速率:
临界冲气曲线公式为:I=I0e-at%h^2
在充电过程中,充电电流**过临界放气曲线的部分只能使电池与水发生反应产生气体并升温,不能增加电池的容量
1、恒流充电阶段,充电电流保持恒定,充满功率快速增加,电压升高;
2、恒压充电阶段,充电电压保持恒定,充电电力继续增加,充电电流减小;
3、电池充满,电流低于浮充转换电流,充电电压降至浮充电压;
4、浮充电阶段,充电电压保持浮充电压;
普通三相充电的阶段是恒流充电,主要是考虑到电路设计更方便,而不是佳的电池性能设计。
根据铅酸蓄电池充入气体的演变过程,三相充电过程中一般的气体释放过程如下:恒流充电的后一个周期和恒压充电的预充电,电流**过临界气体的演变范围,导致电池的气体放出,导致寿命下降。
**过临界气体释放范围的电流只会导致电池产生气体和温度升高,而不会转化为电池能量,从而降低了充电效率。
解决方法:脉冲解决失水问题
智能脉冲恒定速度的阶段比普通充电器的恒流+恒压阶段缩短近一个小时,而这一个小时的高压充电是水分分配的关键时刻。智能脉冲在打开电压参数的基础上,把光线转换成智能脉冲是非常准确的,而普通的充电器以电流参数为转向灯,一旦电池硫化,内阻,充电电流也,很难转灯电流,很容易造成高压段长时间充电,加速水解。
2)分析:铅酸电池固化的原因
长期电池潴留,充电过程中长期过度充电和充电不足,使用大电流放电,较易导致电池固化。它的外观是:一个灯,一个充满电,我们称之为电池“假货损坏”。硫酸盐硫酸盐附着在板上,减少了电解质和板的反应区域,电池容量迅速下降。失水会增加电池的固化;硫化会增加电池的失水量,容易形成恶性循环。
解决方案:智能脉冲溶液固化
智能脉冲使用智能脉冲尖峰可以打破硫酸铅的晶核,使其难以形成硫酸盐。
智能脉冲充电器:①恒功率,②智能脉冲,③滴灌
普通:①恒流,②恒压,③浮充
3)分析:铅酸电池不平衡
一个电池由三到四个。由于制造过程中,每个电池的平衡无法实现。普通充电器的平均电流先用小容量单电池充电,形成过充电。当电池放电时,小容量电池首先被放电完毕,并形成过放电。长期的恶性循环,让整个电池出现单一的落后,让整个电池报废。充电器浮充级,小电流500mA,其作用是补偿充电,使电池充满。但是它也带来了两个:1,充满电,过量电流不断,电能转化为热量,水分解,加速水分的分配;2,小电流充电,造成大电流分,容易造成电池组不平衡。
解决方案:智能脉冲解决电池不平衡程序
智能脉动失水量是普通充电器的三分之一,水分损失少,电池电压差会小;另一方面水损失大,则电池电压差。随着失水量的增加,硫化会增加,而一般充电器不会消除硫化功能,所以电池组不平衡。智能脉冲充电,水分损失少,电池电压差小,当电池固化后,可将脉冲去除,使整组电池趋于平衡。智能脉冲恒功率级大电流,作用是:1,快速充电,节省充电时间;2,启动电池板消除电池钝化现象,恢复电池容量,使整组电池容量趋于平衡。放电阶段,为消除电流分的影响,电池充满充电不足,充满后自动关闭,减少水分解,保持电池平衡。
4)分析:铅酸电池热失控问题
电池变形不是一个突然,往往是一个过程。当电池充电到容量的80%时,进入高压充电区。此时,氧气首先在正极板上沉淀,氧气通过隔膜上的孔达到负极板。氧气复苏反应在负极板上进行:2Pb+O2(氧气)=2PbO+Q(加热);PbO+H2SO4=PbSO4+H2O+Q(热量)。当反应达到90%时,氧气产生速率增加,阳极开始产生氢气。大量气体的增加导致电池的内部压力**过阀门压力,安全阀打开,气体逸出,终失去水分。2H2O=2H2↑+O2↑。随着电池循环次数的增加,水逐渐减少,电池出现如下:
1、氧“通道”变平滑,“通道”产生的正氧化很容易达到负值;
2、热容量减小,电池热容量大,失水量大,电池热容量大大降低,电池产生的热量温度迅速上升;
3、由于失水电池**细玻璃纤维隔板发生收缩,使正负极板粘附性变差,内阻,充放电过程中热量增加。经过以上过程,电池内部产生的热量只能通过电池槽热量,如发热量小于发热量,即温升现象。温度上升,使电池的演变过电位降低,气体放出量增加,大量正极氧化通过“通道”在负极表面发生反应,发出大量热量,使温度迅速升高形成一个恶性循环,即所谓的“热失控”。
公司成立以来,一直秉持想客户所想、忧客户所忧、充分维护客户权益,以客户为中心,拥有一套科学合理的作业流程以及客户维护体系,为客户创造是公司生存之根本,通过点滴积累和持续努力,成为者。
http://sunjie123.cn.b2b168.com